Roscovitine Suppresses CD4+ T Cells and T Cell-Mediated Experimental Uveitis
نویسندگان
چکیده
BACKGROUND T cells are essential for the development of uveitis and other autoimmune diseases. After initial activation, CD4+ lymphocytes express the co-stimulatory molecule OX40 that plays an important role in T cell proliferation. Cyclin dependent kinase 2 (CdK2) plays a pivotal role in the cell cycle transition from G1 to S phase. In addition, recent research has implicated CdK2 in T cell activation. Thus, we sought to test the immunosuppressive effect of roscovitine, a potent CdK2 inhibitor, on CD4+ T cell activation, proliferation, and function. DESIGN AND METHODS Mouse CD4+ T cells were activated by anti-CD3 and anti-CD28 antibodies. The expression of OX40, CD44, and CdK2 were analyzed by flow cytometry. In addition, cell cycle progression and apoptosis of control and roscovitine-treated T lymphocytes were measured by BrdU incorporation and annexin V assay, respectively. Furthermore, the immunoregulatory effect of roscovitine was evaluated in both ovalbumin-induced uveitis and experimental autoimmune uveitis (EAU) models. RESULTS In this study, we found that T cell activation induced OX40 expression. Cell cycle analysis showed that more CD4+OX40+ cells entered S phase than OX40- T cells. Concurrently, CD4+OX40+ cells had a higher level of CdK2 expression. Roscovitine treatment blocked activated CD4+ cells from entering S phase. In addition, roscovitine not only reduced the viability of CD4+ lymphocytes but also suppressed T cell activation and cytokine production. Finally, roscovitine significantly attenuated the severity of T cell-dependent, OX40-enhanced uveitis. CONCLUSION These results implicate CdK2 in OX40-augmented T cell response and expansion. Furthermore, this study suggests that roscovitine is a novel, promising, therapeutic agent for treating T cell-mediated diseases such as uveitis.
منابع مشابه
Calcitriol suppresses antiretinal autoimmunity through inhibitory effects on the Th17 effector response.
Experimental autoimmune uveitis (EAU) serves as a model for human autoimmune uveitis and for cell-mediated autoimmunity in general. EAU induced in mice by immunization with the retinal Ag interphotoreceptor retinoid-binding protein in CFA is driven by the Th17 response. Oral calcitriol (1,25-dihydroxyvitamin D(3)) prevented as well as partly reversed disease and suppressed immunological respons...
متن کاملSupplementation of CD4+CD25+ regulatory T cells suppresses experimental autoimmune uveoretinitis.
AIMS To investigate whether supplementation of natural CD4+CD25+ regulatory T cells ameliorates mouse experimental autoimmune uveoretinitis (EAU) induced by CD4+ T cell-dependent interphotoreceptor retinoid-binding protein (IRBP). METHODS C57BL/6 mice were immunised with human interphotoreceptor retinoid-binding protein peptide 1-20 (IRBP(1-20)), and IRBP(1-20)-sensitised T cells were obtaine...
متن کاملInhibition of T cell-mediated inflammation in uveitis by a novel anti-CD3 antibody
BACKGROUND A novel anti-mouse CD3ε antibody, Dow2, recognizes mouse CD3ε without activating T cells and suppresses T-cell activation. The purpose of this study was to determine whether Dow2 can inhibit T cells in uveitis. METHODS Experimental autoimmune uveitis (EAU) was induced in mice by immunization with retinal peptides, followed by administration of Dow2. Inflammation was evaluated by co...
متن کاملSuppression of Autoimmune Retinal Inflammation by an Antiangiogenic Drug
Chronic and recurrent uveitis account for approximately 10% of legal blindness in the western world. Autoimmune uveitis is driven by activated CD4(+) T cells that differentiate into effector T helper cells (Th1, Th2, and Th17) which release proinflammatory cytokines that damage the retina. In this study we investigated the effect of the methionine aminopeptidase 2 (MetAP2) inhibitor, Lodamin, o...
متن کاملComparative Analysis of CD4+ and CD8+ T Cells in Tumor Tissues, Lymph Nodes and the Peripheral Blood from Patients with Breast Cancer
Background: CD4+ and CD8+ T cells are the main types of lymphocytes in cell-mediated immunity and play a central role in the induction of efficient immune responses against tumors. The frequencies of T cell subtypes in the peripheral blood and tumor tissues, and draining lymph nodes (dLN) can be considered as useful markers for evaluation of the immune system in cancers. Methods: In this study,...
متن کامل